فهرست :
مقدمه
فصل اول : مقدمه ای بر شبکه های عصبی
تاریخچۀ شبکه های عصبی
نرون طبیعی
یادگیری در سیستم های بیولوژیک
شباهت شبکۀ عصبی زنده و مصنوعی
کاربرد شبکه های عصبی
فصل دوم : ساختار شبکه های عصبی مصنوعی
تعریف شبکه های عصبی مصنوعی
نرون های مصنوعی
اجزای یک شبکه عصبی
الگو برداری از مغز انسان
افزایش سرعت
حساسیت بالا به رخداد اشتباه
رایانه ها قادر نیستند از تجربیات گذشته استفاده نمایند
عدم ارائۀ پاسخ مناسب در شرایط جدید
ویژگی های شبکه های عصبی مصنوعی
قابلیت یادگیری
قابلیت تعمیم
پردازش موازی
مقاوم بودن
قابلیت کاربری
تشخیص داده های اشتباه
تحمل خطا
غیر خطی بودن
تصویر کردن ورودی – خروجی
معایب شبکه های عصبی
انواع توابع انتقال
یادگیری شبکه های عصبی
یادگیری نظارت شده
یادگیری نظارت نشده
یادگیری تقویت یافته
الگوریتم پس انتشار خطا
آموزش دلتا
آموزش ترکیبی
آموزش رقابتی
آموزش هب
ساختارهای مختلف شبکه های عصبی مصنوعی
شبکه های پسخور
شبکه های پیش خور
شبکه های پیش خور تک لایه
شبکه های پیش خور چند لایه
پرسپترون
یادگیری پرسپترون
یادگیری پرسپترون مبتنی به روش برداری
محدودیت های پرسپترون
شبکه های عصبی پرسپترون چندلایه
رفع مشکل
حل مشکل
مدل جدید
قاعدۀ جدید فراگیری
بررسی مجدد مساله یای حذفی (XOR)
شبکۀ هاپفیلد
فصل سوم : چند نمونه از کاربردهای شبکه های عصبی
آشکارسازی چهره با شبکه های عصبی در تصاویر رنگی
مقدمه
مشخصات رنگ پوست انسان
استخراج رنگ پوست
تولید رنگ پوست در فضایرنگی cbcr
شبکه های عصبی پیشنهادی
نتایج آزمایشات
نتایج آزمایش اترویفریمهای ویدئویی
آشکارسازی چهره
منابع
برچسب ها:
پایان نامه کارشناسی رشته برق انواع شبکه های عصبی و کاربرد آن ها در الکترونیک پایان نامه کارشناسی رشته برق انواع شبکه های عصبی و کاربرد آن ها در الکترونیک